/* eslint max-len: 0 */ import {input, isFlowEnabled, state} from "../traverser/base"; import {unexpected} from "../traverser/util"; import {charCodes} from "../util/charcodes"; import {IS_IDENTIFIER_CHAR, IS_IDENTIFIER_START} from "../util/identifier"; import {IS_WHITESPACE, skipWhiteSpace} from "../util/whitespace"; import {ContextualKeyword} from "./keywords"; import readWord from "./readWord"; import { TokenType as tt} from "./types"; export var IdentifierRole; (function (IdentifierRole) { const Access = 0; IdentifierRole[IdentifierRole["Access"] = Access] = "Access"; const ExportAccess = Access + 1; IdentifierRole[IdentifierRole["ExportAccess"] = ExportAccess] = "ExportAccess"; const TopLevelDeclaration = ExportAccess + 1; IdentifierRole[IdentifierRole["TopLevelDeclaration"] = TopLevelDeclaration] = "TopLevelDeclaration"; const FunctionScopedDeclaration = TopLevelDeclaration + 1; IdentifierRole[IdentifierRole["FunctionScopedDeclaration"] = FunctionScopedDeclaration] = "FunctionScopedDeclaration"; const BlockScopedDeclaration = FunctionScopedDeclaration + 1; IdentifierRole[IdentifierRole["BlockScopedDeclaration"] = BlockScopedDeclaration] = "BlockScopedDeclaration"; const ObjectShorthandTopLevelDeclaration = BlockScopedDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthandTopLevelDeclaration"] = ObjectShorthandTopLevelDeclaration] = "ObjectShorthandTopLevelDeclaration"; const ObjectShorthandFunctionScopedDeclaration = ObjectShorthandTopLevelDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthandFunctionScopedDeclaration"] = ObjectShorthandFunctionScopedDeclaration] = "ObjectShorthandFunctionScopedDeclaration"; const ObjectShorthandBlockScopedDeclaration = ObjectShorthandFunctionScopedDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthandBlockScopedDeclaration"] = ObjectShorthandBlockScopedDeclaration] = "ObjectShorthandBlockScopedDeclaration"; const ObjectShorthand = ObjectShorthandBlockScopedDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthand"] = ObjectShorthand] = "ObjectShorthand"; // Any identifier bound in an import statement, e.g. both A and b from // `import A, * as b from 'A';` const ImportDeclaration = ObjectShorthand + 1; IdentifierRole[IdentifierRole["ImportDeclaration"] = ImportDeclaration] = "ImportDeclaration"; const ObjectKey = ImportDeclaration + 1; IdentifierRole[IdentifierRole["ObjectKey"] = ObjectKey] = "ObjectKey"; // The `foo` in `import {foo as bar} from "./abc";`. const ImportAccess = ObjectKey + 1; IdentifierRole[IdentifierRole["ImportAccess"] = ImportAccess] = "ImportAccess"; })(IdentifierRole || (IdentifierRole = {})); /** * Extra information on jsxTagStart tokens, used to determine which of the three * jsx functions are called in the automatic transform. */ export var JSXRole; (function (JSXRole) { // The element is self-closing or has a body that resolves to empty. We // shouldn't emit children at all in this case. const NoChildren = 0; JSXRole[JSXRole["NoChildren"] = NoChildren] = "NoChildren"; // The element has a single explicit child, which might still be an arbitrary // expression like an array. We should emit that expression as the children. const OneChild = NoChildren + 1; JSXRole[JSXRole["OneChild"] = OneChild] = "OneChild"; // The element has at least two explicitly-specified children or has spread // children, so child positions are assumed to be "static". We should wrap // these children in an array. const StaticChildren = OneChild + 1; JSXRole[JSXRole["StaticChildren"] = StaticChildren] = "StaticChildren"; // The element has a prop named "key" after a prop spread, so we should fall // back to the createElement function. const KeyAfterPropSpread = StaticChildren + 1; JSXRole[JSXRole["KeyAfterPropSpread"] = KeyAfterPropSpread] = "KeyAfterPropSpread"; })(JSXRole || (JSXRole = {})); export function isDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.TopLevelDeclaration || role === IdentifierRole.FunctionScopedDeclaration || role === IdentifierRole.BlockScopedDeclaration || role === IdentifierRole.ObjectShorthandTopLevelDeclaration || role === IdentifierRole.ObjectShorthandFunctionScopedDeclaration || role === IdentifierRole.ObjectShorthandBlockScopedDeclaration ); } export function isNonTopLevelDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.FunctionScopedDeclaration || role === IdentifierRole.BlockScopedDeclaration || role === IdentifierRole.ObjectShorthandFunctionScopedDeclaration || role === IdentifierRole.ObjectShorthandBlockScopedDeclaration ); } export function isTopLevelDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.TopLevelDeclaration || role === IdentifierRole.ObjectShorthandTopLevelDeclaration || role === IdentifierRole.ImportDeclaration ); } export function isBlockScopedDeclaration(token) { const role = token.identifierRole; // Treat top-level declarations as block scope since the distinction doesn't matter here. return ( role === IdentifierRole.TopLevelDeclaration || role === IdentifierRole.BlockScopedDeclaration || role === IdentifierRole.ObjectShorthandTopLevelDeclaration || role === IdentifierRole.ObjectShorthandBlockScopedDeclaration ); } export function isFunctionScopedDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.FunctionScopedDeclaration || role === IdentifierRole.ObjectShorthandFunctionScopedDeclaration ); } export function isObjectShorthandDeclaration(token) { return ( token.identifierRole === IdentifierRole.ObjectShorthandTopLevelDeclaration || token.identifierRole === IdentifierRole.ObjectShorthandBlockScopedDeclaration || token.identifierRole === IdentifierRole.ObjectShorthandFunctionScopedDeclaration ); } // Object type used to represent tokens. Note that normally, tokens // simply exist as properties on the parser object. This is only // used for the onToken callback and the external tokenizer. export class Token { constructor() { this.type = state.type; this.contextualKeyword = state.contextualKeyword; this.start = state.start; this.end = state.end; this.scopeDepth = state.scopeDepth; this.isType = state.isType; this.identifierRole = null; this.jsxRole = null; this.shadowsGlobal = false; this.isAsyncOperation = false; this.contextId = null; this.rhsEndIndex = null; this.isExpression = false; this.numNullishCoalesceStarts = 0; this.numNullishCoalesceEnds = 0; this.isOptionalChainStart = false; this.isOptionalChainEnd = false; this.subscriptStartIndex = null; this.nullishStartIndex = null; } // Initially false for all tokens, then may be computed in a follow-up step that does scope // analysis. // Initially false for all tokens, but may be set during transform to mark it as containing an // await operation. // For assignments, the index of the RHS. For export tokens, the end of the export. // For class tokens, records if the class is a class expression or a class statement. // Number of times to insert a `nullishCoalesce(` snippet before this token. // Number of times to insert a `)` snippet after this token. // If true, insert an `optionalChain([` snippet before this token. // If true, insert a `])` snippet after this token. // Tag for `.`, `?.`, `[`, `?.[`, `(`, and `?.(` to denote the "root" token for this // subscript chain. This can be used to determine if this chain is an optional chain. // Tag for `??` operators to denote the root token for this nullish coalescing call. } // ## Tokenizer // Move to the next token export function next() { state.tokens.push(new Token()); nextToken(); } // Call instead of next when inside a template, since that needs to be handled differently. export function nextTemplateToken() { state.tokens.push(new Token()); state.start = state.pos; readTmplToken(); } // The tokenizer never parses regexes by default. Instead, the parser is responsible for // instructing it to parse a regex when we see a slash at the start of an expression. export function retokenizeSlashAsRegex() { if (state.type === tt.assign) { --state.pos; } readRegexp(); } export function pushTypeContext(existingTokensInType) { for (let i = state.tokens.length - existingTokensInType; i < state.tokens.length; i++) { state.tokens[i].isType = true; } const oldIsType = state.isType; state.isType = true; return oldIsType; } export function popTypeContext(oldIsType) { state.isType = oldIsType; } export function eat(type) { if (match(type)) { next(); return true; } else { return false; } } export function eatTypeToken(tokenType) { const oldIsType = state.isType; state.isType = true; eat(tokenType); state.isType = oldIsType; } export function match(type) { return state.type === type; } export function lookaheadType() { const snapshot = state.snapshot(); next(); const type = state.type; state.restoreFromSnapshot(snapshot); return type; } export class TypeAndKeyword { constructor(type, contextualKeyword) { this.type = type; this.contextualKeyword = contextualKeyword; } } export function lookaheadTypeAndKeyword() { const snapshot = state.snapshot(); next(); const type = state.type; const contextualKeyword = state.contextualKeyword; state.restoreFromSnapshot(snapshot); return new TypeAndKeyword(type, contextualKeyword); } export function nextTokenStart() { return nextTokenStartSince(state.pos); } export function nextTokenStartSince(pos) { skipWhiteSpace.lastIndex = pos; const skip = skipWhiteSpace.exec(input); return pos + skip[0].length; } export function lookaheadCharCode() { return input.charCodeAt(nextTokenStart()); } // Read a single token, updating the parser object's token-related // properties. export function nextToken() { skipSpace(); state.start = state.pos; if (state.pos >= input.length) { const tokens = state.tokens; // We normally run past the end a bit, but if we're way past the end, avoid an infinite loop. // Also check the token positions rather than the types since sometimes we rewrite the token // type to something else. if ( tokens.length >= 2 && tokens[tokens.length - 1].start >= input.length && tokens[tokens.length - 2].start >= input.length ) { unexpected("Unexpectedly reached the end of input."); } finishToken(tt.eof); return; } readToken(input.charCodeAt(state.pos)); } function readToken(code) { // Identifier or keyword. '\uXXXX' sequences are allowed in // identifiers, so '\' also dispatches to that. if ( IS_IDENTIFIER_START[code] || code === charCodes.backslash || (code === charCodes.atSign && input.charCodeAt(state.pos + 1) === charCodes.atSign) ) { readWord(); } else { getTokenFromCode(code); } } function skipBlockComment() { while ( input.charCodeAt(state.pos) !== charCodes.asterisk || input.charCodeAt(state.pos + 1) !== charCodes.slash ) { state.pos++; if (state.pos > input.length) { unexpected("Unterminated comment", state.pos - 2); return; } } state.pos += 2; } export function skipLineComment(startSkip) { let ch = input.charCodeAt((state.pos += startSkip)); if (state.pos < input.length) { while ( ch !== charCodes.lineFeed && ch !== charCodes.carriageReturn && ch !== charCodes.lineSeparator && ch !== charCodes.paragraphSeparator && ++state.pos < input.length ) { ch = input.charCodeAt(state.pos); } } } // Called at the start of the parse and after every token. Skips // whitespace and comments. export function skipSpace() { while (state.pos < input.length) { const ch = input.charCodeAt(state.pos); switch (ch) { case charCodes.carriageReturn: if (input.charCodeAt(state.pos + 1) === charCodes.lineFeed) { ++state.pos; } case charCodes.lineFeed: case charCodes.lineSeparator: case charCodes.paragraphSeparator: ++state.pos; break; case charCodes.slash: switch (input.charCodeAt(state.pos + 1)) { case charCodes.asterisk: state.pos += 2; skipBlockComment(); break; case charCodes.slash: skipLineComment(2); break; default: return; } break; default: if (IS_WHITESPACE[ch]) { ++state.pos; } else { return; } } } } // Called at the end of every token. Sets various fields, and skips the space after the token, so // that the next one's `start` will point at the right position. export function finishToken( type, contextualKeyword = ContextualKeyword.NONE, ) { state.end = state.pos; state.type = type; state.contextualKeyword = contextualKeyword; } // ### Token reading // This is the function that is called to fetch the next token. It // is somewhat obscure, because it works in character codes rather // than characters, and because operator parsing has been inlined // into it. // // All in the name of speed. function readToken_dot() { const nextChar = input.charCodeAt(state.pos + 1); if (nextChar >= charCodes.digit0 && nextChar <= charCodes.digit9) { readNumber(true); return; } if (nextChar === charCodes.dot && input.charCodeAt(state.pos + 2) === charCodes.dot) { state.pos += 3; finishToken(tt.ellipsis); } else { ++state.pos; finishToken(tt.dot); } } function readToken_slash() { const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === charCodes.equalsTo) { finishOp(tt.assign, 2); } else { finishOp(tt.slash, 1); } } function readToken_mult_modulo(code) { // '%*' let tokenType = code === charCodes.asterisk ? tt.star : tt.modulo; let width = 1; let nextChar = input.charCodeAt(state.pos + 1); // Exponentiation operator ** if (code === charCodes.asterisk && nextChar === charCodes.asterisk) { width++; nextChar = input.charCodeAt(state.pos + 2); tokenType = tt.exponent; } // Match *= or %=, disallowing *=> which can be valid in flow. if ( nextChar === charCodes.equalsTo && input.charCodeAt(state.pos + 2) !== charCodes.greaterThan ) { width++; tokenType = tt.assign; } finishOp(tokenType, width); } function readToken_pipe_amp(code) { // '|&' const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === code) { if (input.charCodeAt(state.pos + 2) === charCodes.equalsTo) { // ||= or &&= finishOp(tt.assign, 3); } else { // || or && finishOp(code === charCodes.verticalBar ? tt.logicalOR : tt.logicalAND, 2); } return; } if (code === charCodes.verticalBar) { // '|>' if (nextChar === charCodes.greaterThan) { finishOp(tt.pipeline, 2); return; } else if (nextChar === charCodes.rightCurlyBrace && isFlowEnabled) { // '|}' finishOp(tt.braceBarR, 2); return; } } if (nextChar === charCodes.equalsTo) { finishOp(tt.assign, 2); return; } finishOp(code === charCodes.verticalBar ? tt.bitwiseOR : tt.bitwiseAND, 1); } function readToken_caret() { // '^' const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === charCodes.equalsTo) { finishOp(tt.assign, 2); } else { finishOp(tt.bitwiseXOR, 1); } } function readToken_plus_min(code) { // '+-' const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === code) { // Tentatively call this a prefix operator, but it might be changed to postfix later. finishOp(tt.preIncDec, 2); return; } if (nextChar === charCodes.equalsTo) { finishOp(tt.assign, 2); } else if (code === charCodes.plusSign) { finishOp(tt.plus, 1); } else { finishOp(tt.minus, 1); } } function readToken_lt() { const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === charCodes.lessThan) { if (input.charCodeAt(state.pos + 2) === charCodes.equalsTo) { finishOp(tt.assign, 3); return; } // We see <<, but need to be really careful about whether to treat it as a // true left-shift or as two < tokens. if (state.isType) { // Within a type, << might come up in a snippet like `Array<() => void>`, // so treat it as two < tokens. Importantly, this should only override << // rather than other tokens like <= . If we treated <= as < in a type // context, then the snippet `a as T <= 1` would incorrectly start parsing // a type argument on T. We don't need to worry about `a as T << 1` // because TypeScript disallows that syntax. finishOp(tt.lessThan, 1); } else { // Outside a type, this might be a true left-shift operator, or it might // still be two open-type-arg tokens, such as in `f<() => void>()`. We // look at the token while considering the `f`, so we don't yet know that // we're in a type context. In this case, we initially tokenize as a // left-shift and correct after-the-fact as necessary in // tsParseTypeArgumentsWithPossibleBitshift . finishOp(tt.bitShiftL, 2); } return; } if (nextChar === charCodes.equalsTo) { // <= finishOp(tt.relationalOrEqual, 2); } else { finishOp(tt.lessThan, 1); } } function readToken_gt() { if (state.isType) { // Avoid right-shift for things like `Array>` and // greater-than-or-equal for things like `const a: Array=[];`. finishOp(tt.greaterThan, 1); return; } const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === charCodes.greaterThan) { const size = input.charCodeAt(state.pos + 2) === charCodes.greaterThan ? 3 : 2; if (input.charCodeAt(state.pos + size) === charCodes.equalsTo) { finishOp(tt.assign, size + 1); return; } finishOp(tt.bitShiftR, size); return; } if (nextChar === charCodes.equalsTo) { // >= finishOp(tt.relationalOrEqual, 2); } else { finishOp(tt.greaterThan, 1); } } /** * Reinterpret a possible > token when transitioning from a type to a non-type * context. * * This comes up in two situations where >= needs to be treated as one token: * - After an `as` expression, like in the code `a as T >= 1`. * - In a type argument in an expression context, e.g. `f(a < b, c >= d)`, we * need to see the token as >= so that we get an error and backtrack to * normal expression parsing. * * Other situations require >= to be seen as two tokens, e.g. * `const x: Array=[];`, so it's important to treat > as its own token in * typical type parsing situations. */ export function rescan_gt() { if (state.type === tt.greaterThan) { state.pos -= 1; readToken_gt(); } } function readToken_eq_excl(code) { // '=!' const nextChar = input.charCodeAt(state.pos + 1); if (nextChar === charCodes.equalsTo) { finishOp(tt.equality, input.charCodeAt(state.pos + 2) === charCodes.equalsTo ? 3 : 2); return; } if (code === charCodes.equalsTo && nextChar === charCodes.greaterThan) { // '=>' state.pos += 2; finishToken(tt.arrow); return; } finishOp(code === charCodes.equalsTo ? tt.eq : tt.bang, 1); } function readToken_question() { // '?' const nextChar = input.charCodeAt(state.pos + 1); const nextChar2 = input.charCodeAt(state.pos + 2); if ( nextChar === charCodes.questionMark && // In Flow (but not TypeScript), ??string is a valid type that should be // tokenized as two individual ? tokens. !(isFlowEnabled && state.isType) ) { if (nextChar2 === charCodes.equalsTo) { // '??=' finishOp(tt.assign, 3); } else { // '??' finishOp(tt.nullishCoalescing, 2); } } else if ( nextChar === charCodes.dot && !(nextChar2 >= charCodes.digit0 && nextChar2 <= charCodes.digit9) ) { // '.' not followed by a number state.pos += 2; finishToken(tt.questionDot); } else { ++state.pos; finishToken(tt.question); } } export function getTokenFromCode(code) { switch (code) { case charCodes.numberSign: ++state.pos; finishToken(tt.hash); return; // The interpretation of a dot depends on whether it is followed // by a digit or another two dots. case charCodes.dot: readToken_dot(); return; // Punctuation tokens. case charCodes.leftParenthesis: ++state.pos; finishToken(tt.parenL); return; case charCodes.rightParenthesis: ++state.pos; finishToken(tt.parenR); return; case charCodes.semicolon: ++state.pos; finishToken(tt.semi); return; case charCodes.comma: ++state.pos; finishToken(tt.comma); return; case charCodes.leftSquareBracket: ++state.pos; finishToken(tt.bracketL); return; case charCodes.rightSquareBracket: ++state.pos; finishToken(tt.bracketR); return; case charCodes.leftCurlyBrace: if (isFlowEnabled && input.charCodeAt(state.pos + 1) === charCodes.verticalBar) { finishOp(tt.braceBarL, 2); } else { ++state.pos; finishToken(tt.braceL); } return; case charCodes.rightCurlyBrace: ++state.pos; finishToken(tt.braceR); return; case charCodes.colon: if (input.charCodeAt(state.pos + 1) === charCodes.colon) { finishOp(tt.doubleColon, 2); } else { ++state.pos; finishToken(tt.colon); } return; case charCodes.questionMark: readToken_question(); return; case charCodes.atSign: ++state.pos; finishToken(tt.at); return; case charCodes.graveAccent: ++state.pos; finishToken(tt.backQuote); return; case charCodes.digit0: { const nextChar = input.charCodeAt(state.pos + 1); // '0x', '0X', '0o', '0O', '0b', '0B' if ( nextChar === charCodes.lowercaseX || nextChar === charCodes.uppercaseX || nextChar === charCodes.lowercaseO || nextChar === charCodes.uppercaseO || nextChar === charCodes.lowercaseB || nextChar === charCodes.uppercaseB ) { readRadixNumber(); return; } } // Anything else beginning with a digit is an integer, octal // number, or float. case charCodes.digit1: case charCodes.digit2: case charCodes.digit3: case charCodes.digit4: case charCodes.digit5: case charCodes.digit6: case charCodes.digit7: case charCodes.digit8: case charCodes.digit9: readNumber(false); return; // Quotes produce strings. case charCodes.quotationMark: case charCodes.apostrophe: readString(code); return; // Operators are parsed inline in tiny state machines. '=' (charCodes.equalsTo) is // often referred to. `finishOp` simply skips the amount of // characters it is given as second argument, and returns a token // of the type given by its first argument. case charCodes.slash: readToken_slash(); return; case charCodes.percentSign: case charCodes.asterisk: readToken_mult_modulo(code); return; case charCodes.verticalBar: case charCodes.ampersand: readToken_pipe_amp(code); return; case charCodes.caret: readToken_caret(); return; case charCodes.plusSign: case charCodes.dash: readToken_plus_min(code); return; case charCodes.lessThan: readToken_lt(); return; case charCodes.greaterThan: readToken_gt(); return; case charCodes.equalsTo: case charCodes.exclamationMark: readToken_eq_excl(code); return; case charCodes.tilde: finishOp(tt.tilde, 1); return; default: break; } unexpected(`Unexpected character '${String.fromCharCode(code)}'`, state.pos); } function finishOp(type, size) { state.pos += size; finishToken(type); } function readRegexp() { const start = state.pos; let escaped = false; let inClass = false; for (;;) { if (state.pos >= input.length) { unexpected("Unterminated regular expression", start); return; } const code = input.charCodeAt(state.pos); if (escaped) { escaped = false; } else { if (code === charCodes.leftSquareBracket) { inClass = true; } else if (code === charCodes.rightSquareBracket && inClass) { inClass = false; } else if (code === charCodes.slash && !inClass) { break; } escaped = code === charCodes.backslash; } ++state.pos; } ++state.pos; // Need to use `skipWord` because '\uXXXX' sequences are allowed here (don't ask). skipWord(); finishToken(tt.regexp); } /** * Read a decimal integer. Note that this can't be unified with the similar code * in readRadixNumber (which also handles hex digits) because "e" needs to be * the end of the integer so that we can properly handle scientific notation. */ function readInt() { while (true) { const code = input.charCodeAt(state.pos); if ((code >= charCodes.digit0 && code <= charCodes.digit9) || code === charCodes.underscore) { state.pos++; } else { break; } } } function readRadixNumber() { state.pos += 2; // 0x // Walk to the end of the number, allowing hex digits. while (true) { const code = input.charCodeAt(state.pos); if ( (code >= charCodes.digit0 && code <= charCodes.digit9) || (code >= charCodes.lowercaseA && code <= charCodes.lowercaseF) || (code >= charCodes.uppercaseA && code <= charCodes.uppercaseF) || code === charCodes.underscore ) { state.pos++; } else { break; } } const nextChar = input.charCodeAt(state.pos); if (nextChar === charCodes.lowercaseN) { ++state.pos; finishToken(tt.bigint); } else { finishToken(tt.num); } } // Read an integer, octal integer, or floating-point number. function readNumber(startsWithDot) { let isBigInt = false; let isDecimal = false; if (!startsWithDot) { readInt(); } let nextChar = input.charCodeAt(state.pos); if (nextChar === charCodes.dot) { ++state.pos; readInt(); nextChar = input.charCodeAt(state.pos); } if (nextChar === charCodes.uppercaseE || nextChar === charCodes.lowercaseE) { nextChar = input.charCodeAt(++state.pos); if (nextChar === charCodes.plusSign || nextChar === charCodes.dash) { ++state.pos; } readInt(); nextChar = input.charCodeAt(state.pos); } if (nextChar === charCodes.lowercaseN) { ++state.pos; isBigInt = true; } else if (nextChar === charCodes.lowercaseM) { ++state.pos; isDecimal = true; } if (isBigInt) { finishToken(tt.bigint); return; } if (isDecimal) { finishToken(tt.decimal); return; } finishToken(tt.num); } function readString(quote) { state.pos++; for (;;) { if (state.pos >= input.length) { unexpected("Unterminated string constant"); return; } const ch = input.charCodeAt(state.pos); if (ch === charCodes.backslash) { state.pos++; } else if (ch === quote) { break; } state.pos++; } state.pos++; finishToken(tt.string); } // Reads template string tokens. function readTmplToken() { for (;;) { if (state.pos >= input.length) { unexpected("Unterminated template"); return; } const ch = input.charCodeAt(state.pos); if ( ch === charCodes.graveAccent || (ch === charCodes.dollarSign && input.charCodeAt(state.pos + 1) === charCodes.leftCurlyBrace) ) { if (state.pos === state.start && match(tt.template)) { if (ch === charCodes.dollarSign) { state.pos += 2; finishToken(tt.dollarBraceL); return; } else { ++state.pos; finishToken(tt.backQuote); return; } } finishToken(tt.template); return; } if (ch === charCodes.backslash) { state.pos++; } state.pos++; } } // Skip to the end of the current word. Note that this is the same as the snippet at the end of // readWord, but calling skipWord from readWord seems to slightly hurt performance from some rough // measurements. export function skipWord() { while (state.pos < input.length) { const ch = input.charCodeAt(state.pos); if (IS_IDENTIFIER_CHAR[ch]) { state.pos++; } else if (ch === charCodes.backslash) { // \u state.pos += 2; if (input.charCodeAt(state.pos) === charCodes.leftCurlyBrace) { while ( state.pos < input.length && input.charCodeAt(state.pos) !== charCodes.rightCurlyBrace ) { state.pos++; } state.pos++; } } else { break; } } }