"use strict";Object.defineProperty(exports, "__esModule", {value: true}); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }/* eslint max-len: 0 */ var _base = require('../traverser/base'); var _util = require('../traverser/util'); var _charcodes = require('../util/charcodes'); var _identifier = require('../util/identifier'); var _whitespace = require('../util/whitespace'); var _keywords = require('./keywords'); var _readWord = require('./readWord'); var _readWord2 = _interopRequireDefault(_readWord); var _types = require('./types'); var IdentifierRole; (function (IdentifierRole) { const Access = 0; IdentifierRole[IdentifierRole["Access"] = Access] = "Access"; const ExportAccess = Access + 1; IdentifierRole[IdentifierRole["ExportAccess"] = ExportAccess] = "ExportAccess"; const TopLevelDeclaration = ExportAccess + 1; IdentifierRole[IdentifierRole["TopLevelDeclaration"] = TopLevelDeclaration] = "TopLevelDeclaration"; const FunctionScopedDeclaration = TopLevelDeclaration + 1; IdentifierRole[IdentifierRole["FunctionScopedDeclaration"] = FunctionScopedDeclaration] = "FunctionScopedDeclaration"; const BlockScopedDeclaration = FunctionScopedDeclaration + 1; IdentifierRole[IdentifierRole["BlockScopedDeclaration"] = BlockScopedDeclaration] = "BlockScopedDeclaration"; const ObjectShorthandTopLevelDeclaration = BlockScopedDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthandTopLevelDeclaration"] = ObjectShorthandTopLevelDeclaration] = "ObjectShorthandTopLevelDeclaration"; const ObjectShorthandFunctionScopedDeclaration = ObjectShorthandTopLevelDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthandFunctionScopedDeclaration"] = ObjectShorthandFunctionScopedDeclaration] = "ObjectShorthandFunctionScopedDeclaration"; const ObjectShorthandBlockScopedDeclaration = ObjectShorthandFunctionScopedDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthandBlockScopedDeclaration"] = ObjectShorthandBlockScopedDeclaration] = "ObjectShorthandBlockScopedDeclaration"; const ObjectShorthand = ObjectShorthandBlockScopedDeclaration + 1; IdentifierRole[IdentifierRole["ObjectShorthand"] = ObjectShorthand] = "ObjectShorthand"; // Any identifier bound in an import statement, e.g. both A and b from // `import A, * as b from 'A';` const ImportDeclaration = ObjectShorthand + 1; IdentifierRole[IdentifierRole["ImportDeclaration"] = ImportDeclaration] = "ImportDeclaration"; const ObjectKey = ImportDeclaration + 1; IdentifierRole[IdentifierRole["ObjectKey"] = ObjectKey] = "ObjectKey"; // The `foo` in `import {foo as bar} from "./abc";`. const ImportAccess = ObjectKey + 1; IdentifierRole[IdentifierRole["ImportAccess"] = ImportAccess] = "ImportAccess"; })(IdentifierRole || (exports.IdentifierRole = IdentifierRole = {})); /** * Extra information on jsxTagStart tokens, used to determine which of the three * jsx functions are called in the automatic transform. */ var JSXRole; (function (JSXRole) { // The element is self-closing or has a body that resolves to empty. We // shouldn't emit children at all in this case. const NoChildren = 0; JSXRole[JSXRole["NoChildren"] = NoChildren] = "NoChildren"; // The element has a single explicit child, which might still be an arbitrary // expression like an array. We should emit that expression as the children. const OneChild = NoChildren + 1; JSXRole[JSXRole["OneChild"] = OneChild] = "OneChild"; // The element has at least two explicitly-specified children or has spread // children, so child positions are assumed to be "static". We should wrap // these children in an array. const StaticChildren = OneChild + 1; JSXRole[JSXRole["StaticChildren"] = StaticChildren] = "StaticChildren"; // The element has a prop named "key" after a prop spread, so we should fall // back to the createElement function. const KeyAfterPropSpread = StaticChildren + 1; JSXRole[JSXRole["KeyAfterPropSpread"] = KeyAfterPropSpread] = "KeyAfterPropSpread"; })(JSXRole || (exports.JSXRole = JSXRole = {})); function isDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.TopLevelDeclaration || role === IdentifierRole.FunctionScopedDeclaration || role === IdentifierRole.BlockScopedDeclaration || role === IdentifierRole.ObjectShorthandTopLevelDeclaration || role === IdentifierRole.ObjectShorthandFunctionScopedDeclaration || role === IdentifierRole.ObjectShorthandBlockScopedDeclaration ); } exports.isDeclaration = isDeclaration; function isNonTopLevelDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.FunctionScopedDeclaration || role === IdentifierRole.BlockScopedDeclaration || role === IdentifierRole.ObjectShorthandFunctionScopedDeclaration || role === IdentifierRole.ObjectShorthandBlockScopedDeclaration ); } exports.isNonTopLevelDeclaration = isNonTopLevelDeclaration; function isTopLevelDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.TopLevelDeclaration || role === IdentifierRole.ObjectShorthandTopLevelDeclaration || role === IdentifierRole.ImportDeclaration ); } exports.isTopLevelDeclaration = isTopLevelDeclaration; function isBlockScopedDeclaration(token) { const role = token.identifierRole; // Treat top-level declarations as block scope since the distinction doesn't matter here. return ( role === IdentifierRole.TopLevelDeclaration || role === IdentifierRole.BlockScopedDeclaration || role === IdentifierRole.ObjectShorthandTopLevelDeclaration || role === IdentifierRole.ObjectShorthandBlockScopedDeclaration ); } exports.isBlockScopedDeclaration = isBlockScopedDeclaration; function isFunctionScopedDeclaration(token) { const role = token.identifierRole; return ( role === IdentifierRole.FunctionScopedDeclaration || role === IdentifierRole.ObjectShorthandFunctionScopedDeclaration ); } exports.isFunctionScopedDeclaration = isFunctionScopedDeclaration; function isObjectShorthandDeclaration(token) { return ( token.identifierRole === IdentifierRole.ObjectShorthandTopLevelDeclaration || token.identifierRole === IdentifierRole.ObjectShorthandBlockScopedDeclaration || token.identifierRole === IdentifierRole.ObjectShorthandFunctionScopedDeclaration ); } exports.isObjectShorthandDeclaration = isObjectShorthandDeclaration; // Object type used to represent tokens. Note that normally, tokens // simply exist as properties on the parser object. This is only // used for the onToken callback and the external tokenizer. class Token { constructor() { this.type = _base.state.type; this.contextualKeyword = _base.state.contextualKeyword; this.start = _base.state.start; this.end = _base.state.end; this.scopeDepth = _base.state.scopeDepth; this.isType = _base.state.isType; this.identifierRole = null; this.jsxRole = null; this.shadowsGlobal = false; this.isAsyncOperation = false; this.contextId = null; this.rhsEndIndex = null; this.isExpression = false; this.numNullishCoalesceStarts = 0; this.numNullishCoalesceEnds = 0; this.isOptionalChainStart = false; this.isOptionalChainEnd = false; this.subscriptStartIndex = null; this.nullishStartIndex = null; } // Initially false for all tokens, then may be computed in a follow-up step that does scope // analysis. // Initially false for all tokens, but may be set during transform to mark it as containing an // await operation. // For assignments, the index of the RHS. For export tokens, the end of the export. // For class tokens, records if the class is a class expression or a class statement. // Number of times to insert a `nullishCoalesce(` snippet before this token. // Number of times to insert a `)` snippet after this token. // If true, insert an `optionalChain([` snippet before this token. // If true, insert a `])` snippet after this token. // Tag for `.`, `?.`, `[`, `?.[`, `(`, and `?.(` to denote the "root" token for this // subscript chain. This can be used to determine if this chain is an optional chain. // Tag for `??` operators to denote the root token for this nullish coalescing call. } exports.Token = Token; // ## Tokenizer // Move to the next token function next() { _base.state.tokens.push(new Token()); nextToken(); } exports.next = next; // Call instead of next when inside a template, since that needs to be handled differently. function nextTemplateToken() { _base.state.tokens.push(new Token()); _base.state.start = _base.state.pos; readTmplToken(); } exports.nextTemplateToken = nextTemplateToken; // The tokenizer never parses regexes by default. Instead, the parser is responsible for // instructing it to parse a regex when we see a slash at the start of an expression. function retokenizeSlashAsRegex() { if (_base.state.type === _types.TokenType.assign) { --_base.state.pos; } readRegexp(); } exports.retokenizeSlashAsRegex = retokenizeSlashAsRegex; function pushTypeContext(existingTokensInType) { for (let i = _base.state.tokens.length - existingTokensInType; i < _base.state.tokens.length; i++) { _base.state.tokens[i].isType = true; } const oldIsType = _base.state.isType; _base.state.isType = true; return oldIsType; } exports.pushTypeContext = pushTypeContext; function popTypeContext(oldIsType) { _base.state.isType = oldIsType; } exports.popTypeContext = popTypeContext; function eat(type) { if (match(type)) { next(); return true; } else { return false; } } exports.eat = eat; function eatTypeToken(tokenType) { const oldIsType = _base.state.isType; _base.state.isType = true; eat(tokenType); _base.state.isType = oldIsType; } exports.eatTypeToken = eatTypeToken; function match(type) { return _base.state.type === type; } exports.match = match; function lookaheadType() { const snapshot = _base.state.snapshot(); next(); const type = _base.state.type; _base.state.restoreFromSnapshot(snapshot); return type; } exports.lookaheadType = lookaheadType; class TypeAndKeyword { constructor(type, contextualKeyword) { this.type = type; this.contextualKeyword = contextualKeyword; } } exports.TypeAndKeyword = TypeAndKeyword; function lookaheadTypeAndKeyword() { const snapshot = _base.state.snapshot(); next(); const type = _base.state.type; const contextualKeyword = _base.state.contextualKeyword; _base.state.restoreFromSnapshot(snapshot); return new TypeAndKeyword(type, contextualKeyword); } exports.lookaheadTypeAndKeyword = lookaheadTypeAndKeyword; function nextTokenStart() { return nextTokenStartSince(_base.state.pos); } exports.nextTokenStart = nextTokenStart; function nextTokenStartSince(pos) { _whitespace.skipWhiteSpace.lastIndex = pos; const skip = _whitespace.skipWhiteSpace.exec(_base.input); return pos + skip[0].length; } exports.nextTokenStartSince = nextTokenStartSince; function lookaheadCharCode() { return _base.input.charCodeAt(nextTokenStart()); } exports.lookaheadCharCode = lookaheadCharCode; // Read a single token, updating the parser object's token-related // properties. function nextToken() { skipSpace(); _base.state.start = _base.state.pos; if (_base.state.pos >= _base.input.length) { const tokens = _base.state.tokens; // We normally run past the end a bit, but if we're way past the end, avoid an infinite loop. // Also check the token positions rather than the types since sometimes we rewrite the token // type to something else. if ( tokens.length >= 2 && tokens[tokens.length - 1].start >= _base.input.length && tokens[tokens.length - 2].start >= _base.input.length ) { _util.unexpected.call(void 0, "Unexpectedly reached the end of input."); } finishToken(_types.TokenType.eof); return; } readToken(_base.input.charCodeAt(_base.state.pos)); } exports.nextToken = nextToken; function readToken(code) { // Identifier or keyword. '\uXXXX' sequences are allowed in // identifiers, so '\' also dispatches to that. if ( _identifier.IS_IDENTIFIER_START[code] || code === _charcodes.charCodes.backslash || (code === _charcodes.charCodes.atSign && _base.input.charCodeAt(_base.state.pos + 1) === _charcodes.charCodes.atSign) ) { _readWord2.default.call(void 0, ); } else { getTokenFromCode(code); } } function skipBlockComment() { while ( _base.input.charCodeAt(_base.state.pos) !== _charcodes.charCodes.asterisk || _base.input.charCodeAt(_base.state.pos + 1) !== _charcodes.charCodes.slash ) { _base.state.pos++; if (_base.state.pos > _base.input.length) { _util.unexpected.call(void 0, "Unterminated comment", _base.state.pos - 2); return; } } _base.state.pos += 2; } function skipLineComment(startSkip) { let ch = _base.input.charCodeAt((_base.state.pos += startSkip)); if (_base.state.pos < _base.input.length) { while ( ch !== _charcodes.charCodes.lineFeed && ch !== _charcodes.charCodes.carriageReturn && ch !== _charcodes.charCodes.lineSeparator && ch !== _charcodes.charCodes.paragraphSeparator && ++_base.state.pos < _base.input.length ) { ch = _base.input.charCodeAt(_base.state.pos); } } } exports.skipLineComment = skipLineComment; // Called at the start of the parse and after every token. Skips // whitespace and comments. function skipSpace() { while (_base.state.pos < _base.input.length) { const ch = _base.input.charCodeAt(_base.state.pos); switch (ch) { case _charcodes.charCodes.carriageReturn: if (_base.input.charCodeAt(_base.state.pos + 1) === _charcodes.charCodes.lineFeed) { ++_base.state.pos; } case _charcodes.charCodes.lineFeed: case _charcodes.charCodes.lineSeparator: case _charcodes.charCodes.paragraphSeparator: ++_base.state.pos; break; case _charcodes.charCodes.slash: switch (_base.input.charCodeAt(_base.state.pos + 1)) { case _charcodes.charCodes.asterisk: _base.state.pos += 2; skipBlockComment(); break; case _charcodes.charCodes.slash: skipLineComment(2); break; default: return; } break; default: if (_whitespace.IS_WHITESPACE[ch]) { ++_base.state.pos; } else { return; } } } } exports.skipSpace = skipSpace; // Called at the end of every token. Sets various fields, and skips the space after the token, so // that the next one's `start` will point at the right position. function finishToken( type, contextualKeyword = _keywords.ContextualKeyword.NONE, ) { _base.state.end = _base.state.pos; _base.state.type = type; _base.state.contextualKeyword = contextualKeyword; } exports.finishToken = finishToken; // ### Token reading // This is the function that is called to fetch the next token. It // is somewhat obscure, because it works in character codes rather // than characters, and because operator parsing has been inlined // into it. // // All in the name of speed. function readToken_dot() { const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar >= _charcodes.charCodes.digit0 && nextChar <= _charcodes.charCodes.digit9) { readNumber(true); return; } if (nextChar === _charcodes.charCodes.dot && _base.input.charCodeAt(_base.state.pos + 2) === _charcodes.charCodes.dot) { _base.state.pos += 3; finishToken(_types.TokenType.ellipsis); } else { ++_base.state.pos; finishToken(_types.TokenType.dot); } } function readToken_slash() { const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.assign, 2); } else { finishOp(_types.TokenType.slash, 1); } } function readToken_mult_modulo(code) { // '%*' let tokenType = code === _charcodes.charCodes.asterisk ? _types.TokenType.star : _types.TokenType.modulo; let width = 1; let nextChar = _base.input.charCodeAt(_base.state.pos + 1); // Exponentiation operator ** if (code === _charcodes.charCodes.asterisk && nextChar === _charcodes.charCodes.asterisk) { width++; nextChar = _base.input.charCodeAt(_base.state.pos + 2); tokenType = _types.TokenType.exponent; } // Match *= or %=, disallowing *=> which can be valid in flow. if ( nextChar === _charcodes.charCodes.equalsTo && _base.input.charCodeAt(_base.state.pos + 2) !== _charcodes.charCodes.greaterThan ) { width++; tokenType = _types.TokenType.assign; } finishOp(tokenType, width); } function readToken_pipe_amp(code) { // '|&' const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === code) { if (_base.input.charCodeAt(_base.state.pos + 2) === _charcodes.charCodes.equalsTo) { // ||= or &&= finishOp(_types.TokenType.assign, 3); } else { // || or && finishOp(code === _charcodes.charCodes.verticalBar ? _types.TokenType.logicalOR : _types.TokenType.logicalAND, 2); } return; } if (code === _charcodes.charCodes.verticalBar) { // '|>' if (nextChar === _charcodes.charCodes.greaterThan) { finishOp(_types.TokenType.pipeline, 2); return; } else if (nextChar === _charcodes.charCodes.rightCurlyBrace && _base.isFlowEnabled) { // '|}' finishOp(_types.TokenType.braceBarR, 2); return; } } if (nextChar === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.assign, 2); return; } finishOp(code === _charcodes.charCodes.verticalBar ? _types.TokenType.bitwiseOR : _types.TokenType.bitwiseAND, 1); } function readToken_caret() { // '^' const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.assign, 2); } else { finishOp(_types.TokenType.bitwiseXOR, 1); } } function readToken_plus_min(code) { // '+-' const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === code) { // Tentatively call this a prefix operator, but it might be changed to postfix later. finishOp(_types.TokenType.preIncDec, 2); return; } if (nextChar === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.assign, 2); } else if (code === _charcodes.charCodes.plusSign) { finishOp(_types.TokenType.plus, 1); } else { finishOp(_types.TokenType.minus, 1); } } function readToken_lt() { const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === _charcodes.charCodes.lessThan) { if (_base.input.charCodeAt(_base.state.pos + 2) === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.assign, 3); return; } // We see <<, but need to be really careful about whether to treat it as a // true left-shift or as two < tokens. if (_base.state.isType) { // Within a type, << might come up in a snippet like `Array<() => void>`, // so treat it as two < tokens. Importantly, this should only override << // rather than other tokens like <= . If we treated <= as < in a type // context, then the snippet `a as T <= 1` would incorrectly start parsing // a type argument on T. We don't need to worry about `a as T << 1` // because TypeScript disallows that syntax. finishOp(_types.TokenType.lessThan, 1); } else { // Outside a type, this might be a true left-shift operator, or it might // still be two open-type-arg tokens, such as in `f<() => void>()`. We // look at the token while considering the `f`, so we don't yet know that // we're in a type context. In this case, we initially tokenize as a // left-shift and correct after-the-fact as necessary in // tsParseTypeArgumentsWithPossibleBitshift . finishOp(_types.TokenType.bitShiftL, 2); } return; } if (nextChar === _charcodes.charCodes.equalsTo) { // <= finishOp(_types.TokenType.relationalOrEqual, 2); } else { finishOp(_types.TokenType.lessThan, 1); } } function readToken_gt() { if (_base.state.isType) { // Avoid right-shift for things like `Array>` and // greater-than-or-equal for things like `const a: Array=[];`. finishOp(_types.TokenType.greaterThan, 1); return; } const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === _charcodes.charCodes.greaterThan) { const size = _base.input.charCodeAt(_base.state.pos + 2) === _charcodes.charCodes.greaterThan ? 3 : 2; if (_base.input.charCodeAt(_base.state.pos + size) === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.assign, size + 1); return; } finishOp(_types.TokenType.bitShiftR, size); return; } if (nextChar === _charcodes.charCodes.equalsTo) { // >= finishOp(_types.TokenType.relationalOrEqual, 2); } else { finishOp(_types.TokenType.greaterThan, 1); } } /** * Reinterpret a possible > token when transitioning from a type to a non-type * context. * * This comes up in two situations where >= needs to be treated as one token: * - After an `as` expression, like in the code `a as T >= 1`. * - In a type argument in an expression context, e.g. `f(a < b, c >= d)`, we * need to see the token as >= so that we get an error and backtrack to * normal expression parsing. * * Other situations require >= to be seen as two tokens, e.g. * `const x: Array=[];`, so it's important to treat > as its own token in * typical type parsing situations. */ function rescan_gt() { if (_base.state.type === _types.TokenType.greaterThan) { _base.state.pos -= 1; readToken_gt(); } } exports.rescan_gt = rescan_gt; function readToken_eq_excl(code) { // '=!' const nextChar = _base.input.charCodeAt(_base.state.pos + 1); if (nextChar === _charcodes.charCodes.equalsTo) { finishOp(_types.TokenType.equality, _base.input.charCodeAt(_base.state.pos + 2) === _charcodes.charCodes.equalsTo ? 3 : 2); return; } if (code === _charcodes.charCodes.equalsTo && nextChar === _charcodes.charCodes.greaterThan) { // '=>' _base.state.pos += 2; finishToken(_types.TokenType.arrow); return; } finishOp(code === _charcodes.charCodes.equalsTo ? _types.TokenType.eq : _types.TokenType.bang, 1); } function readToken_question() { // '?' const nextChar = _base.input.charCodeAt(_base.state.pos + 1); const nextChar2 = _base.input.charCodeAt(_base.state.pos + 2); if ( nextChar === _charcodes.charCodes.questionMark && // In Flow (but not TypeScript), ??string is a valid type that should be // tokenized as two individual ? tokens. !(_base.isFlowEnabled && _base.state.isType) ) { if (nextChar2 === _charcodes.charCodes.equalsTo) { // '??=' finishOp(_types.TokenType.assign, 3); } else { // '??' finishOp(_types.TokenType.nullishCoalescing, 2); } } else if ( nextChar === _charcodes.charCodes.dot && !(nextChar2 >= _charcodes.charCodes.digit0 && nextChar2 <= _charcodes.charCodes.digit9) ) { // '.' not followed by a number _base.state.pos += 2; finishToken(_types.TokenType.questionDot); } else { ++_base.state.pos; finishToken(_types.TokenType.question); } } function getTokenFromCode(code) { switch (code) { case _charcodes.charCodes.numberSign: ++_base.state.pos; finishToken(_types.TokenType.hash); return; // The interpretation of a dot depends on whether it is followed // by a digit or another two dots. case _charcodes.charCodes.dot: readToken_dot(); return; // Punctuation tokens. case _charcodes.charCodes.leftParenthesis: ++_base.state.pos; finishToken(_types.TokenType.parenL); return; case _charcodes.charCodes.rightParenthesis: ++_base.state.pos; finishToken(_types.TokenType.parenR); return; case _charcodes.charCodes.semicolon: ++_base.state.pos; finishToken(_types.TokenType.semi); return; case _charcodes.charCodes.comma: ++_base.state.pos; finishToken(_types.TokenType.comma); return; case _charcodes.charCodes.leftSquareBracket: ++_base.state.pos; finishToken(_types.TokenType.bracketL); return; case _charcodes.charCodes.rightSquareBracket: ++_base.state.pos; finishToken(_types.TokenType.bracketR); return; case _charcodes.charCodes.leftCurlyBrace: if (_base.isFlowEnabled && _base.input.charCodeAt(_base.state.pos + 1) === _charcodes.charCodes.verticalBar) { finishOp(_types.TokenType.braceBarL, 2); } else { ++_base.state.pos; finishToken(_types.TokenType.braceL); } return; case _charcodes.charCodes.rightCurlyBrace: ++_base.state.pos; finishToken(_types.TokenType.braceR); return; case _charcodes.charCodes.colon: if (_base.input.charCodeAt(_base.state.pos + 1) === _charcodes.charCodes.colon) { finishOp(_types.TokenType.doubleColon, 2); } else { ++_base.state.pos; finishToken(_types.TokenType.colon); } return; case _charcodes.charCodes.questionMark: readToken_question(); return; case _charcodes.charCodes.atSign: ++_base.state.pos; finishToken(_types.TokenType.at); return; case _charcodes.charCodes.graveAccent: ++_base.state.pos; finishToken(_types.TokenType.backQuote); return; case _charcodes.charCodes.digit0: { const nextChar = _base.input.charCodeAt(_base.state.pos + 1); // '0x', '0X', '0o', '0O', '0b', '0B' if ( nextChar === _charcodes.charCodes.lowercaseX || nextChar === _charcodes.charCodes.uppercaseX || nextChar === _charcodes.charCodes.lowercaseO || nextChar === _charcodes.charCodes.uppercaseO || nextChar === _charcodes.charCodes.lowercaseB || nextChar === _charcodes.charCodes.uppercaseB ) { readRadixNumber(); return; } } // Anything else beginning with a digit is an integer, octal // number, or float. case _charcodes.charCodes.digit1: case _charcodes.charCodes.digit2: case _charcodes.charCodes.digit3: case _charcodes.charCodes.digit4: case _charcodes.charCodes.digit5: case _charcodes.charCodes.digit6: case _charcodes.charCodes.digit7: case _charcodes.charCodes.digit8: case _charcodes.charCodes.digit9: readNumber(false); return; // Quotes produce strings. case _charcodes.charCodes.quotationMark: case _charcodes.charCodes.apostrophe: readString(code); return; // Operators are parsed inline in tiny state machines. '=' (charCodes.equalsTo) is // often referred to. `finishOp` simply skips the amount of // characters it is given as second argument, and returns a token // of the type given by its first argument. case _charcodes.charCodes.slash: readToken_slash(); return; case _charcodes.charCodes.percentSign: case _charcodes.charCodes.asterisk: readToken_mult_modulo(code); return; case _charcodes.charCodes.verticalBar: case _charcodes.charCodes.ampersand: readToken_pipe_amp(code); return; case _charcodes.charCodes.caret: readToken_caret(); return; case _charcodes.charCodes.plusSign: case _charcodes.charCodes.dash: readToken_plus_min(code); return; case _charcodes.charCodes.lessThan: readToken_lt(); return; case _charcodes.charCodes.greaterThan: readToken_gt(); return; case _charcodes.charCodes.equalsTo: case _charcodes.charCodes.exclamationMark: readToken_eq_excl(code); return; case _charcodes.charCodes.tilde: finishOp(_types.TokenType.tilde, 1); return; default: break; } _util.unexpected.call(void 0, `Unexpected character '${String.fromCharCode(code)}'`, _base.state.pos); } exports.getTokenFromCode = getTokenFromCode; function finishOp(type, size) { _base.state.pos += size; finishToken(type); } function readRegexp() { const start = _base.state.pos; let escaped = false; let inClass = false; for (;;) { if (_base.state.pos >= _base.input.length) { _util.unexpected.call(void 0, "Unterminated regular expression", start); return; } const code = _base.input.charCodeAt(_base.state.pos); if (escaped) { escaped = false; } else { if (code === _charcodes.charCodes.leftSquareBracket) { inClass = true; } else if (code === _charcodes.charCodes.rightSquareBracket && inClass) { inClass = false; } else if (code === _charcodes.charCodes.slash && !inClass) { break; } escaped = code === _charcodes.charCodes.backslash; } ++_base.state.pos; } ++_base.state.pos; // Need to use `skipWord` because '\uXXXX' sequences are allowed here (don't ask). skipWord(); finishToken(_types.TokenType.regexp); } /** * Read a decimal integer. Note that this can't be unified with the similar code * in readRadixNumber (which also handles hex digits) because "e" needs to be * the end of the integer so that we can properly handle scientific notation. */ function readInt() { while (true) { const code = _base.input.charCodeAt(_base.state.pos); if ((code >= _charcodes.charCodes.digit0 && code <= _charcodes.charCodes.digit9) || code === _charcodes.charCodes.underscore) { _base.state.pos++; } else { break; } } } function readRadixNumber() { _base.state.pos += 2; // 0x // Walk to the end of the number, allowing hex digits. while (true) { const code = _base.input.charCodeAt(_base.state.pos); if ( (code >= _charcodes.charCodes.digit0 && code <= _charcodes.charCodes.digit9) || (code >= _charcodes.charCodes.lowercaseA && code <= _charcodes.charCodes.lowercaseF) || (code >= _charcodes.charCodes.uppercaseA && code <= _charcodes.charCodes.uppercaseF) || code === _charcodes.charCodes.underscore ) { _base.state.pos++; } else { break; } } const nextChar = _base.input.charCodeAt(_base.state.pos); if (nextChar === _charcodes.charCodes.lowercaseN) { ++_base.state.pos; finishToken(_types.TokenType.bigint); } else { finishToken(_types.TokenType.num); } } // Read an integer, octal integer, or floating-point number. function readNumber(startsWithDot) { let isBigInt = false; let isDecimal = false; if (!startsWithDot) { readInt(); } let nextChar = _base.input.charCodeAt(_base.state.pos); if (nextChar === _charcodes.charCodes.dot) { ++_base.state.pos; readInt(); nextChar = _base.input.charCodeAt(_base.state.pos); } if (nextChar === _charcodes.charCodes.uppercaseE || nextChar === _charcodes.charCodes.lowercaseE) { nextChar = _base.input.charCodeAt(++_base.state.pos); if (nextChar === _charcodes.charCodes.plusSign || nextChar === _charcodes.charCodes.dash) { ++_base.state.pos; } readInt(); nextChar = _base.input.charCodeAt(_base.state.pos); } if (nextChar === _charcodes.charCodes.lowercaseN) { ++_base.state.pos; isBigInt = true; } else if (nextChar === _charcodes.charCodes.lowercaseM) { ++_base.state.pos; isDecimal = true; } if (isBigInt) { finishToken(_types.TokenType.bigint); return; } if (isDecimal) { finishToken(_types.TokenType.decimal); return; } finishToken(_types.TokenType.num); } function readString(quote) { _base.state.pos++; for (;;) { if (_base.state.pos >= _base.input.length) { _util.unexpected.call(void 0, "Unterminated string constant"); return; } const ch = _base.input.charCodeAt(_base.state.pos); if (ch === _charcodes.charCodes.backslash) { _base.state.pos++; } else if (ch === quote) { break; } _base.state.pos++; } _base.state.pos++; finishToken(_types.TokenType.string); } // Reads template string tokens. function readTmplToken() { for (;;) { if (_base.state.pos >= _base.input.length) { _util.unexpected.call(void 0, "Unterminated template"); return; } const ch = _base.input.charCodeAt(_base.state.pos); if ( ch === _charcodes.charCodes.graveAccent || (ch === _charcodes.charCodes.dollarSign && _base.input.charCodeAt(_base.state.pos + 1) === _charcodes.charCodes.leftCurlyBrace) ) { if (_base.state.pos === _base.state.start && match(_types.TokenType.template)) { if (ch === _charcodes.charCodes.dollarSign) { _base.state.pos += 2; finishToken(_types.TokenType.dollarBraceL); return; } else { ++_base.state.pos; finishToken(_types.TokenType.backQuote); return; } } finishToken(_types.TokenType.template); return; } if (ch === _charcodes.charCodes.backslash) { _base.state.pos++; } _base.state.pos++; } } // Skip to the end of the current word. Note that this is the same as the snippet at the end of // readWord, but calling skipWord from readWord seems to slightly hurt performance from some rough // measurements. function skipWord() { while (_base.state.pos < _base.input.length) { const ch = _base.input.charCodeAt(_base.state.pos); if (_identifier.IS_IDENTIFIER_CHAR[ch]) { _base.state.pos++; } else if (ch === _charcodes.charCodes.backslash) { // \u _base.state.pos += 2; if (_base.input.charCodeAt(_base.state.pos) === _charcodes.charCodes.leftCurlyBrace) { while ( _base.state.pos < _base.input.length && _base.input.charCodeAt(_base.state.pos) !== _charcodes.charCodes.rightCurlyBrace ) { _base.state.pos++; } _base.state.pos++; } } else { break; } } } exports.skipWord = skipWord;